SOISVd dVILVIA

Now that you've installed MATLAB, it's time to see what it can do. In this tuto-
rial you will be shown some of its capabilities; to show all of what MATLARB can
do would simply take too much time. As you follow this tutorial, you will begin to
see the power of MATLAB to solve a wide variety of problems important to you.
You may find it beneficial to go through this tutorial while running MATLAB. In
doing so, you will be able to enter the MATLAB statements as described, confirm
the results presented, and develop a hands-on understanding of MATLAB.

Perhaps the easiest way to visualize MATLAB is to think of it as a full-featured
calculator. Like a basic calculator, it does simple math such as addition, sub-
traction, multiplication, and division. Like a scientific calculator, it handles
complex numbers, square roots and powers, logarithms, and trigonometric op-
erations such as sine, cosine, and tangent. Like a programmable calculator, it
can be used to store and retrieve data; you can create, execute, and save se-
quences of commands to automate the computation of important equations; you
can make logical comparisons and control the order in which commands are
executed. Like the most powerful calculators available, it allows you to plot data
in a wide variety of ways, perform matrix algebra, manipulate polynomials,
integrate functions, manipulate equations symbolically, and so on.

In reality, MATLAB offers many more features and is more multifaceted than
any calculator. MATLAB is a tool for making mathematical calculations. It is a
user-friendly programming language with features more advanced and much
easier to use than computer languages such as BASIC, Pascal, or C. It provides
a rich environment for data visualization through its powerful graphics capa-
bilities. MATLAB is an application development platform, where you can create
graphical user interfaces (GUIs) that offer a visual approach to solving specific
problems. In addition, MATLAB offers sets of problem-solving tools for specific
application areas, called Toolboxes. For example, this Student Edition of
MATLARB includes the Control System Toolbox, the Signal Processing Toolbox,
and the Symbolic Math Toolbox. In addition, you can create toolboxes of your own.

Because of the vast power of MATLAB, it is important to start with the basics.
That is, rather than taking in everything at once and hoping that you under-
stand some of it, in the beginning it is helpful to think of MATLAB as a calcu-
lator. First, as a basic calculator; next, as a scientific caleulator; then, as a
programmable calculator; then, finally, as a top-of-the-line calculator. By using
this calculator analogy, you will see the ease with which MATLAB solves every-
day problems, and will begin to see how MATLAB can be used to solve complex
problems in a flexible, straightforward manner.

Depending on your background, you may find parts of this tutorial boring, or
some of it may be over your head. In either case, find a point in the tutorial
where you're comfortable, start up MATLAB, and begin. To assist you while
learning, the following conventions are used throughout this text:

Introduction Chapter 1

Bold Important terms and facts

Bold italics New terms

Bold initial caps Keyboard key names, menu names, and menu items

Constant width User input, function and file names, commands, and
scereen displays

Italics Window names, book titles, toolbox names, company names,
example text, and mathematical notation

Running MATLAB creates one or more windows on your monitor. Of these, the
Command window is the primary place where you interact with MATLAB. This
window has an appearance as shown below. The character string £DU> is the
MATLAB prompt in the Student Edition. In other versions of MATLAB, the
prompt is simply ». When the Command window is active, a cursor (most likely
blinking) should appear to the right of the prompt, as shown in the figure. This

¢ aSwudent Ediony MATLAB Command Window (101 =]
e Eoe ndow Help
o] cliie) o) e Bl 2] s
To get started type one of these commands helpwin. helpdesk. or doemo
EOuU- |
= _l-l
. .
Figure 1.1 PC Command Window
s ey e “Student Edition> MATLAB Command Windouw - =Fa
NEEE [2]
To get atorted type ofe ol these comsands heipein, helpdest o dess ﬂ
() |
9]
L & =w

Figure 1.2 Mac Initial Command Window

e S -

s T,

1.1

cursor and the MATLAB prompt signify that MATLAB is waiting Lo answer a
mathematical question.

Simple Math

Just like a calculator, MATLAB can do simple math. Consider the following
simple example: Mary goes to the office-supply store and buys 4 erasers at 25
cents each, 6 memo pads at 52 cents each, and 2 rolls of tape at 99 cents each.
How many items did Mary buy, and how much did they cost?

To solve this using your calculator, you enter:
4+6+2=12items 4-25+4+6-52+2-99 = 610 cents

In MATLAB, this can be solved in a number of different ways. First, the above-
mentioned calculator approach can be taken:

EDU» 44642
ans =
12

EDU» 4*25 + 6*52 + 2*99
ans =
610

Note that MATLAB doesn’t care about spaces, for the most part, and that mul-
tiplication takes precedence over addition. Note also that MATLAB calls the
result ans (short for answer) for both computations.

As an alternative, the above problem can be solved by storing information in
MATLAB variables:

EDU» erasers=4

erasers =
4
EDU» pads=6
pads =
f
EOU» tape=2;

Introduction Chapter 1

a‘

11

Simple Math

Fln ost=erasers A pad s hZ+l iperyl

Here we created three MATLAB variables—or asers, pads, and tape—Lto
store the number of each items. After entering cach statement, MATLAB dis-
played the resulls, except in the case of tape. The semicolon at the end of the
line EDU» tape=2;tells MATLAB to evaluate the line but not tell us the an-
swer. Finally, rather than calling the results an, we told MATLAB to call the
number of items purchased items and the total price paid cost. At each step,
MATLAB remembered past information. Because MATLAB remembers
things, let’s ask what the average cost per item was.

EDU» average_cost=cost/items
average_cosl =
50.8333

Because average cost is two words and MATLAB variable names must be
one word, the underscore was used to create the single MATLARB variable
average_cost.

In addition to addition and multiplication, MATLAB offers the following basic
arithmetic operations:

addition,a + b + 5+3
subtraction,a — b — 23-12
multiplication, a - b * 3.14*0.85
division,a = b /or\ 56/8 = B\56
exponentiation, a® L 582

The order in which these operations are evaluated in a given expression is given
by the usual rules of precedence, which can be summarized as follows: Ex-
pressions are evaluated from left to right, with the exponentiation
operation having the highest order of precedence, followed by both
multiplication and division having equal precedence, followed by both

addition and subtraction having equal precedence. Parentheses can be
used to alter this usual ordering, in which case evaluation initiates within the
innermost parentheses and proceeds outward.

1.2 The MATLAB Workspace

As you work in the Command window, MATLAB remembers the commands you
enter as well as the values of any variables you create. These commands and
variables are said to reside in the MATLAB Workspace, and may be recalled
whenever you wish. For example, to check the value of tape, all you have to do
is ask MATLAB for it by entering its name at the prompt:

EDU» tape
tape =
2

If you can’t remember the name of a variable, you can ask MATLAB for a list
of the variables it knows by using the MATLAB command who:

EDU»who
Your variables are:

ans cost items tape
average_cost erasers pads

Note that MATLAB doesn't tell you the value of all the variables; it merely
gives you their names. To find their values, you must enter their names at

the MATLAB prompt. Just like a calculator, there’s only so much room to store
variables.

To recall previous commands, MATLAB uses the Cursor keys («——T1) on your
keyboard. For example, pressing the T key once recalls the most recent com-
mand to the MATLAB prompt. Repeated pressing scrolls back through prior
commands one at a time. In a similar manner, pressing the | key scrolls for-
ward through commands. Moreover, entering the first few characters of a
known previous command at the prompt and then pressing the T key immedi-
ately recalls the most recent command having those initial characters. At any
time, the «— and — keys can be used to move the cursor within the command at
the MATLAB prompt. In this manner, the command can be edited. Alterna-
tively, the Mouse can be used along with the Clipboard to cut, copy, paste, and
edit the text at the command prompt.

1.3 About Variables

Like any other computer language, MATLAB has rules about variable names.
Earlier it was noted that variable names must be a single word containing no y
spaces. More specifically, MATLAB variable-naming rules are:

\
L

{
{
}
{
i

P

Introduction Chapter 1

PR r—

1.3 About Variables

e 1 s L i el s el e 2

items, itEms,and 1 TEMS
are all different MATLAB variables

Variable names can contain up to howaboutthisvariablename

31 characters, and characters

beyond the thirty-first are

Variable names are case sensitive. [Lems,

ignored.

Variable names must start with how_about _this_variable name
a letter, followed by any number X51483

of letters, digits, or underscores. a_b c d e

Punctuation characters are

not allowed, since many of them
have special meaning to
MATLAB.

In addition to these naming rules, MATLAB has several special variables.
They are:

The default variable name used for results
pi The ratio of the circumference of a circle to its diameter
eps The smallest number such that, when added to one,
creates a number greater than one on the computer
flops Count of floating point operations
inf Stands for infinity, e.g., 1/0
NaN (or) nan Stands for Not-a-Number, e.g., 0/0
i (and) j i=j=V-1
nargin Number of function input arguments used
nargoul Number of function output arguments used
realmin The smallest usable positive real number
realmax The largest usable positive real number

As you create variables in MATLAB, there may be instances where you wish to
redefine one or more variables. For example:

t0U» erasers=4:

EDU I'l]l‘j'-fr.::

EDU» items=erasers+pads+tape
items =
12

EDU» erasers=6
erasers. =
B

EDU» items
items =
12

Here, using the first example again, we found the number of items Mary pur-
chased. Afterward, we changed the number of erasers to 6, overwriting its prior
value of 4. In doing so, the value of items has not changed. Unlike a spread-
sheet, MATLAB does not recalculate the number of items based on the new
value of erasers. When MATLAB performs a calculation, it does so
using the values it knows at the time the requested command is eval-
uated. In the above-mentioned example, if you wish to recalculate the number
of items, the total cost, and the average cost, it is necessary to recall the appro-
priate MATLAB commands and ask MATLAB to evaluate them again.

The special variables given above follow this guideline also. When you start
MATLAB, they have the values given above; if you change their values, the origi-
nal special values are lost until you clear the variables or restart MATLAB. With
this in mind, avoid redefining special variables unless absolutely necessary.

Variables in the MATLAB workspace can be unconditionally deleted by using
the command clear. For example:

EDU» clear erasers
deletes just the variable erasers.
EDU» clear cost items
deletes both cost and items.
EDU» clear
uses the wildcard * to delete all variables that start with the letters ¢ 1.

EDU» clear

Introduction Chapter 1

deletes all variables in the workspace! You are not asked to confirm
this command. All variables are cleared and cannot be retrieved!

Needless to say, the ¢ lear command is dangerous and should be used with cau-
tion. Thankfully, there is seldom a need to clear variables from the workspace.

1.4 Comments and Punctuation

All text after a percent sign (%) is taken as a comment statement, e.g.:

EOW» erasers=4 % Number of erasers.
egrdsers

The variable erasers is given the value 4, and MATLAB simply ignores the
percent sign and all text following it. This feature makes it easy to document
what you are doing.

Multiple commands can be placed on one line if they are separated by commas
or semicolons, e.g.:

EDU» erasers=4, pads=6; tape=2
erasers
4

Lape
¢

Commas tell MATLAB to display results; semicolons suppress printing.

EDU» average_cost=cost/...

items
average_cost =
50.83233

As shown above, a succession of three periods tells MATLAB that the rest of a
statement appears on the next line. Statement continuation, as shown above,
works if the succession of three periods occurs between variable names or op-
erators. That is, a variable name cannot be split between two lines:

EDU» average _cost=cost/it...

ems

7?77 age_cost=cost/items

Missing operator, comma, or semicolon.
Likewise, comment statements cannot be continued:

EDU» & Comments cannot be continued
[”“-’-' either
227 Undefined function or variable either.

1.4 Comments and Punctuation 9

You can interrupt MATLARB at any time by pressing Ctrl-C (pressing the Ctrl
and C keys simultaneously) on a PC. Pressing #—. (pressing the 4 and . keys
simultaneously) on a Macintosh does the same thing.

1.5 Complex Numbers

One of the most powerful features of MATLAB is that it does not require
any special handling for complex numbers. Complex numbers are formed in
MATLAB in several ways. Examples of complex numbers include:

EDU» cl1=1-2i % the appended i signifies the imaginary parl
cl =

o)

L0000 — 2.0000i
EDU» cl=1-2j % j also works
cl =
1.0000 — 2.0000i
EDU» ¢2=3*(2-sqrt(—1)*3)
c2 =
6.0000 — 9.0000i

EDU» c3=sqrt(-2)

€3 =

0+ 1.4142i
EDU» c4=6+sin(.5)*i
g4 =

6.0000 + 0.47941

EDU» ¢b=6+sin(.5)*]
ch =
6.0000 + 0.4794]

In the last two examples, the MATLAB default values of i=j=\ —1 are used to
form the imaginary part. Multiplication by 1 or j is required in these cases
since sin(.5)1 and sin(.5)Jj mean nothing to MATLAB. Termination with
the characters i and j, as shown in the first two examples above, works only
for numerical constants, not for expressions.

Some programming languages require special handling for complex num-
bers wherever they appear. In MATLAB, no special handling is required. Mathe-
matical operations on complex numbers are written the same as those for real
numbers:

FDU» cb=(cl+c2)/c3 % from the above data
Ch =
-7.7782 4.94975

10 Introduction Chapter 1

e —— e e e e e

L= check 0 ol =gy y (e bongpuared mus o b |2k
check _it_oul
1.0000 + 0.00001

In general, operations on complex numbers lead to complex numbers. In those
cases where a negligible real or imaginary part remains, you can use the func-
tions real and imaq to extract the real and imaginary parts, respectively.

As a final example of complex arithmetic, consider the Euler (sounds like
Oiler) identity, which relates the polar form of a complex number to ils rec-
tangular form:

MzZO0=M-e'"=a+ bi

where the polar form is given by a magnitude M and an angle 0, and the rec-
tangular form is given by a + bi. The relationships among these forms are:

M=V + b
0 = tan '(b/a)
a = Mcosf
b = Msinfl

In MATLAB, the conversion between polar and rectangular forms makes use
of the functions real, imag, abs,and angle:

EDU» cl
cl =
1.0000 — 2.0000i

EDU» mag_cl=abs(cl)
mag_cl =
2.2361

EDU» angle_cl=angle(cl)
angle_cl =
-1.1071

EDU» deg_cl=angle_c1*180/pi
deg_cl =
—63.4349

EDU» real_cl=real(cl)
real_cl =
1

EDU» imag_cl=imaglcl)
imag_cl =
-2

1.5 Complex Numbers 11

12

The MATLAB function 4bs computes the magnitude of complex numbers or
the absolute value of real numbers, depending upon which one you give it.
Likewise, the MATLAB function angle computes the angle of a complex num-
ber in radians.

Introduction Chapter 1

24

acos(x)
acosh(x)
angle(x)
asinix)
asinh(x)
atan(x)
atanZ(x,y)
atanh(x)
ceil(x)
conj(x)
cos(x)
cosh(x)
expl(x)
fix(x)
floor(x)
gecd(x,y)
imag(x)
lem(x,y)
log(x)
loglO(x)
real(x)

rem(x,y)

round(x)

sign(x)

sin(x)
sinh(x)
sqrtix)

tan(x)

tanh(x)

Common Functions

".f'\h.s‘nlul(' vitlue or m.:u:nil"utlt- ol complex :.m-mhn-r
Inverse cosine
Inverse hyperbolic cosine
Four-quadrant angle of complex
Inverse sine
Inverse hyperbolic sine
Inverse tangent
Four-quadrant inverse tangent
Inverse hyperbolic tangent
Round toward plus infinity
Complex conjugate
Cosine
Hyperbolic cosine
Exponential: e
Round toward zero
Round toward minus infinity
Greatest common divisor of integers x and y
Complex imaginary part
Least common multiple of integers x and y
Natural logarithm
Common logarithm
Complex real part

Remainder after division:
rem(x,y) gives the remainder of x/y

Round toward nearest integer

Signum function: return sign of argument, e.g.,
sign(l.2)=1,sign(-23.4)=-1,s5ign(0)=0

Sine

Hyperbolic sine
Square root
Tangent
Hyperbolic tangent

Common Mathematical Functions

15

16

FRe A4atanc]l) % one way to approximate pi
iy =
i.1416
EOU» help atan? % asks for help on the function atan?

ATANZ Four-quadrant inverse Langent.
ATANZ(Y,X) is Lhe four-quadrant arctangent of the real
parts of the elements of X and Y.
—pi <= ATAN2(Y,X) <= pi.

See also ATAN.

EOU» help atan % see the difference between atan? and atan?

ATAN Inverse tangent.
ATAN(X) is the arctangent of the elements of X.

See also ATANZ.

EDU» 180/pi*atan(—2/3) % atan2 uses vector sign information
ans =

3369
EDU» 180/pi*atan2(2,-3)
ans =
146.31
EDU» 180/pi*atan2(—2,3)
ans =
—33.69
EDU» 180/pi*atan2(2.3)
ans =
33.69

EDU» 180/pi*atan2(-2,-3) % 180/pi converts angle to degrees
ans =

—146.31

Yet more examples include:

EDU» y=sqrt(3~2 + 4*2) % show 3-4-5 right triangle relationship
y=
5

EDU» y=rem(23,4) % 23/4 has a remainder of 3
y =
k]

Scientific Features Chapter 2

LU k=2 b, yl=lixixl, y/=tloorix), yi=ceilix). yd=round(x) !

Z2.6000
yl =
Yt =
¢
v
yd =
3
EDU» ged(18,81) % 9 is the largest factor common to 18 and 81
alls, =
9
EDU» 1cm(18,81) % 162 is the least common multiple of 18 and 81
ans =
162

Example: Estimating the Height of a Building

Problem: Consider the problem of estimating the height of a building, as illus-
trated in Fig. 2.1. If the observer is a distance D from the building, the angle
from the observer to the top of the building is 0, and the height of the observer
is h, what is the building height?

Solution: Draw a simple diagram as shown in Fig. 2.1. The building height is
h + H, where H is the length of the triangle side opposite the observer. This
length can be found from the triangle relationship

tan(0) = g

I UL 10
1" lonoc

Figure 2.1 Estimating Building Height

2.1 Common Mathematical Functions 17

18

Therefore, the building heightish + H = h + D - tantn).

Ifh ~ 2meters, D = 50 meters, and #is 60 degrees, MATLAB gives a solution of:

tOU» theta=60
Lhitta =

£
EDU= D=410
1)

50
EDU» building_height=h+D*tan(theta*pi/180)
building_height =

88.603

Note that since MATLAB always uses radians, () was converted to radians by
multiplying by pi/180 before being passed to the tangent function.

Example: Radioactive Decay Example

Problem: The radioactive element polonium has a half-life of 140 days, which
means that because of radioactive decay the amount of polonium remaining af-
ter 140 days is one-half of the original amount. Starting with 10 grams of polo-
nium today, how much is left after 250 days?

Solution: After one half-life, or 140 days, 10 - 0.5 = 5 grams remain. After two
half-lives or 280 days, 5 - 0.5 = 10 - 0.5 - 0.5 = 10 - (0.5)2 = 2.5 grams remain.
Therefore, the correct solution should be between 5 and 2.5 grams, and the
amount remaining after any period of time is given by

amount remaining = initial amount - (0.5)ume/hall-time
For this example, time = 250, and the MATLAB solution is

EDU» initial_amount=10;
EDU» half _1ife=140;
EDU» Lime=250;
[OU» amount _left=initial_amount*0.5(Lime/half_life)
amount _left
2.9003

Thus, approximately 2.9 grams of polonium is left after 250 days. Note that ex-
ponentiation * takes precedence over multiplication *. Therefore, 0. 5" (time/
halt Tife) is computed before multiplying by initial_amount.

Scientific Features Chapter 2

2.1

Example: Acid Concentration Problem

Problem: As part of the manuflacturing process for cast parts at an automotive
plant, parts are dipped in water to cool them, then dipped in an acid-water bath
to clean them. Over time, the concentration of the acid-water solution de-
creases because of the water introduced at immersion and the solution removed
when the parts are taken from the acid—water bath. To maintain quality, the
acid—water solution’s acidity must not fall below some minimum. Start with a
90% acid—water concentration. If the minimum concentration is 50%, the wa-
ter introduced into the acid—water bath is equal to 1% of the bath’s volume, and
1% of the solution is removed when the part is removed, how many parts can
be dipped into the acid—water bath before it drops below the minimum acidity?

Solution: Initially, the acid concentration is initial_con = 90% = acid/(acid +

water). When the first part is dipped in the acid—water bath, the concentration
is reduced to

acid

con = -
(acid + water) + water added

) acid
(acid + water) + lost(acid + water)

acid
(1 + lost)(acid + water)

_initial_con
(1 + lost)

where “acid” is the initial acid volume, “water” is the initial water volume, and
“lost” is the fractional volume of water added. The amount of acid remaining in
the solution after this first dip is, therefore

acid

acid_left =
(1 + lost)

This means that, when the second part is dipped into the acid-water bath, the
concentration is

acid_left
con = -
(acid + water) + water added
acid _left
(1 + lost)(acid + water)

initial_con
(1 + lost)?

Common Mathematical Functions 19

o ————

v

20

Following this process, after n dips, the concentration of the acid-water bath is

intial _con
con - -
(1 + lost)

If min_con i1s the minimum acceptable concentration, the maximum number of
dips is the integer less than or equal to

_ log(initial_con/min_con)
log(1 + lost)

n

In MATLAB, the solution is

EDU» initial_con=90
initial_con =
90
EDU» min_con=50
min_con =
50
EDU» lost=0.01;
EDU» n=floor(log(initial_con/min_con)/log(l+lost))
n =
59

Fifty-nine dips can be completed before the concentration drops below 50%.
Note that the f1oor function was used to round n down to the nearest integer.
Also note that while the natural logarithm was used, 10910 or 1097 could have
also been used.

Example: Interest Calculations

Problem: You've agreed to buy a new car for $18,500. The car dealer is offering
two financing options: (1) 2.9% interest over 4 years, or (2) 8.9% interest over 4
years, with a factory rebate of $1500. Which one is the better deal?

Solution: The monthly payment P on a loan of A dollars, having a monthly in-
terest rate of R, paid off in M months, is

i M
p_ Al ROER)]

(1 +RM =1

giving a total amount paid of T' = P - M.

Scientific Features Chapter 2

In MATLAB, the solution is

EOU» tormat bank 4 use bank display tormat
LOUs A=18500: % amount of loan
EDU» M=12%4: S number of monthy

EOU» FR=1500: % factory rebate

EDU» % tirst financing offer

EDU» R=(2.9/1001/12: % monthly interest rate
EOU» P=A*(RYCLeR)IAM/C (1+R)™*M —1)) % payment
p =

408.67

EDU» T1=P*M % total car cost
Il =
19616.06
EDU» % second financing offer
EDU» R=(B.9/100)/12; % monthly interest rate
EDU» P=(A-FR)*(R*(1+R)*M/((1+R)"M —1)) % payment
[J =

422 .24

EDU» T2=P*M % total car cost
T2 =
20267 .47
EDU» Diff=T2-T1
Diff =
651.41

Based on these results, the first financing offer is the better of the two.

2.1 Common Mathematical Functions

6.1

42

Simple

All of the computations considered to this point have involved single numbers
called sealars. Operations involving scalars are the basis of mathematics. At
the same time, when you wish to perform the same operation on more than one
number at a time, repeated scalar operations are Lime-consuming and cumber-
some. To solve this problem, MATLAB deflines operations on data arrays.

Arrays

Consider the problem of computing values of the sine function over one-half of
its period, namely: y = sin(x) over 0 = x = 7. Since it is impossible to compute
sin(x) at all points over this range (there is an infinite number of them!), we
must choose a finite number of points. In doing so, we are sampling the func-
tion. To pick some number, let’s evaluate sin(x) every 0.1 in this range, i.e., let
x=0,0.17,0.27, ..., 1.07 If you were using a scientific calculator to compute
these values, you would start by making a list, or array, of the values of x. Then
you would enter each value of x into your calculator, find its sine, and write
down the result as the second array y. Perhaps you would write them in an or-
ganized fashion as follows:

As shown, x and y are ordered lists of numbers, i.e., the first value or element
in y is associated with the first value or element in x, the second element in y is
associated with the second element in x, and so on. Because of this ordering, it
is common to refer to individual values or elements in x and y with subscripts,

e.g., xy is the first element in x, y5 is the fifth element in y, x, 1s the nth element t‘
n x.
MATLAB handles arrays in a straightforward and intuitive way. Creating
arrays is easy—just follow the visual organization given above:

EDU» x=[0 .1*pi .2*pi .3*pi .4*pi .4rpi .o*pi /*pi .8*pi .9%pi pil

g =

Columns | through /
4] 0.3142 0.6H283 (0.942% 1250606 1.5/708 | .8850

Columns 8 through 11
2.1991 2.5133 2. 8274 RS

Array Operations Chapter 6

DU y=51n(x) i!
i = |
(o | amn I through 7
() 1.3090 0.5878 0. 8090 (0.9511 1.0000 0.9511
Columns 8 through 11
0.8090 0.58/74 0.3090 0.0000

To create an array in MATLARB, all you have to do is to start with a left bracket,
enter the desired values separated by spaces (or commas), then close the array
with a right bracket. Notice that finding the sine of the values in x follows natu-
rally. MATLAB understands that you want to find the sine of each element in
x and place the results in an associated array called y. This fundamental ca-
pability makes MATLAB different than other computer languages.

Since spaces separate array values, complex numbers entered as array values
cannot have embedded spaces unless expressions are enclosed in parentheses.
For example, [1 —27 3 4 5+61] contains five elements, whereas the identi-
calarrays [(1 —2i) 3 4 5+6i]land [1-21 3 4 5+6i] contain four.

6.2 Array Addressing

Now, since x in the preceding example has more than one element (namely, it
has 11 values separated into columns), MATLAB gives you the result back with
the columns identified. As shown previously, x is an array having one row and
eleven columns, or, in mathematical jargon, it is a row vector, a one-by-eleven
array, or simply an array of length 11.

In MATLAB, individual array elements are accessed using subscripls, e.g.,
x(1) is the first element in x, x(2) is the second element in x, and so on. For
example:

EDU» x(3) % The third element of x
ans =
0.6283

EDU» y(5) % The fifth element of y
ans =
0.9511

To access a block of elements at one time, MATLAB provides colon notation:

EDU» x(1:45)
ans =
0 0.3142 0.6283 0.9425 1.2566

6.2 Array Addressing 43

These are the first through fifth elements in x. 1:5 says “start with 1 and
count up to 5.7

EOU» x(/:end)
ans =

1.885 2.1991 2.5133 2.8274 3.1416

starts with the seventh element and continues to the last element. Here, the
word end signifies the last element in the array x.

EDU» y(3:-1:1)
ans =
0.5878 0.3090 0

These are the third, second, and first elements in reverse order. 3:—1:1 says
“start with 3, count down by 1, and stop at 1.”

EDU» x(2:2:7)
ans =
0.3142 0.9425 1.5708

These are the second, fourth, and sixth elements in x. 2:2:7 says “start with
2, count up by 2, and stop when you get to 7.” In this case, adding 2 to 6 gives
8, which is greater than 7, so the eighth element is not included.

EDU» y([8 2 9 11)
ans =

0.8090 0.3090 0.5878 0

Here we used another array [8 2 9 1] to extract the elements of the array
y in the order we wanted them! The first element taken is the eighth, the
second is the second, the third is the ninth, and the fourth is the first. In fact,
[8 2 9 1]isan array that addresses the desired elements of y.

6.3 Array Construction

Earlier we entered the values of x by typing each individual element in x. While
this is fine when there are only 11 values in x, what if there are 111 values?
Using the colon notation, two other ways of entering x are:

EDU» x=(0:0.1:1)*pi
% =

Columns 1 through /

0 0.3142 0.6783 0.9425 1.2566 1.5708 1
Columns 8 through 11
2.1991 2.5133 7.8274 3.1416

44 Array Operations Chapter 6

L8850

» LT R AR - T) Sy By e e e

LS

6.3 Array Construction 45

Lt s=1inspace(0,pi,11) 1
olumns | through 7
[0.3142 0.6783 (0.9425 1.72566 1.5708 1.8850
Columns 8 through 11
£ 108 25133 2.8214 i.1416

In the first case, the colon notation (0:0.1:1) creates an array that starts at
0, increments by 0.1, and ends at 1. Each element in this array is then multi-
plied by 7 to create the desired values in x. In the second case, the MATLAB
function linspace is used to create x. This function’s arguments are de-
scribed by:

linspace(first_value,last _value,number of values)

Both of these array creation forms are common in MATLAB. The colon nota-
tion form allows you to directly specify the increment between data points, but
not the number of data points. 1inspace, on the other hand, allows you to
directly specify the number of data points, but not the increment between the
data points.

Both of the preceding array creation forms create arrays where the individ-
ual elements are linearly spaced with respect to each other. For the special
case where a logarithmically spaced array is desired, MATLAB provides the
logspace function:

EDU» logspace(0.2,11)
ans =
Columns 1 through 7
1.0000 1.5849 2.5119 3.9811 6.3096 10.0000 15.8489
Columns 8 through 11
25.1189 39.8107 63.0957 100.0000

Here, we created an array starting at 10°, ending at 102, containing 11 values.
The function arguments are described by: i

logspace(first exponent,last exponent,number of values)

Though it is common to begin and end at integer powers of ten, logspace
works equally well with nonintegers.

Sometimes an array is required that is not conveniently described by a
linearly or logarithmically spaced element relationship. There is no uni-
form way to create these arrays. However, array addressing and the ability

46

to combine expressions can help eliminate the need to enter individual ole-
ments one at a l,in'l(’:

EDU» a=1:h, b=1:2:9

creates two arrays. Remember that multiple statements can appear on a single
line if they are separated by commas or semicolons.

EDU» c=[b a]
c =
1 3 b / 9 1 ? 3 4 5

creates an array ¢ composed of the elements of b followed by those of a.

EDU» d=[a(1:2:5) 1 0 1]
d =
1 3 5 1 0 1

creates an array d composed of the first, third, and fifth elements of a followed
by three additional elements.

The basic array construction features of MATLAB are summarized in the fol-
lowing table.

x=[2 2*pi sqrt(2) 2-3jl Create row vector x containing elements

specified

¥=firstslast Create row vector x starting with first,
counting by one, ending at or before
last

x=first:increment:last Create row vector x starting with first,

counting by increnent, ending at or
before Tast

x=linspace(first,last,n) Create row vector x starting with firs t;
ending at 1ast, having n elements

x=logspace(first,last.n) Create logarithmically spaced row vector

% starting with 10" ' ending at 1071,
having n elements

Array Operations Chapter 6

